Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
EMBO Mol Med ; 15(4): e16061, 2023 04 11.
Article in English | MEDLINE | ID: covidwho-2296215

ABSTRACT

The utilisation of protein biomarker panels, rather than individual protein biomarkers, offers a more comprehensive representation of human physiology. It thus has the potential to improve diagnosis, prognosis and the differentiation of responders from nonresponders in the context of precision medicine. Although several proteomic techniques exist for measuring biomarker panels, the integration of proteomics into clinical practice has been limited. In this Commentary, we highlight the significance of quantitative protein biomarker panels in clinical medicine and outline the challenges that must be addressed in order to identify the most promising panels and implement them in clinical routines to realise their medical potential. Furthermore, we argue that the absolute quantification of protein panels through targeted mass spectrometric assays remains the most promising technology for translating proteomics into routine clinical applications due to its high flexibility, low sample costs, independence from affinity reagents and low entry barriers for its integration into existing laboratory workflows.


Subject(s)
Proteome , Proteomics , Humans , Proteomics/methods , Biomarkers/metabolism , Proteome/analysis , Precision Medicine/methods , Mass Spectrometry/methods
2.
Signal Transduct Target Ther ; 7(1): 336, 2022 09 27.
Article in English | MEDLINE | ID: covidwho-2050326

ABSTRACT

Digestive system diseases arise primarily through the interplay of genetic and environmental influences; there is an urgent need in elucidating the pathogenic mechanisms of these diseases and deploy personalized treatments. Traditional and long-established model systems rarely reproduce either tissue complexity or human physiology faithfully; these shortcomings underscore the need for better models. Organoids represent a promising research model, helping us gain a more profound understanding of the digestive organs; this model can also be used to provide patients with precise and individualized treatment and to build rapid in vitro test models for drug screening or gene/cell therapy, linking basic research with clinical treatment. Over the past few decades, the use of organoids has led to an advanced understanding of the composition of each digestive organ and has facilitated disease modeling, chemotherapy dose prediction, CRISPR-Cas9 genetic intervention, high-throughput drug screening, and identification of SARS-CoV-2 targets, pathogenic infection. However, the existing organoids of the digestive system mainly include the epithelial system. In order to reveal the pathogenic mechanism of digestive diseases, it is necessary to establish a completer and more physiological organoid model. Combining organoids and advanced techniques to test individualized treatments of different formulations is a promising approach that requires further exploration. This review highlights the advancements in the field of organoid technology from the perspectives of disease modeling and personalized therapy.


Subject(s)
COVID-19 , Digestive System Diseases , Digestive System Diseases/drug therapy , Digestive System Diseases/genetics , Humans , Organoids , Precision Medicine/methods , SARS-CoV-2/genetics
3.
Stat Med ; 41(27): 5379-5394, 2022 Nov 30.
Article in English | MEDLINE | ID: covidwho-2027404

ABSTRACT

Personalized medicine aims to tailor medical decisions based on patient-specific characteristics. Advances in data capturing techniques such as electronic health records dramatically increase the availability of comprehensive patient profiles, promoting the rapid development of optimal treatment rule (OTR) estimation methods. An archetypal OTR estimation approach is the outcome weighted learning, where OTR is determined under a weighted classification framework with clinical outcomes as the weights. Although outcome weighted learning has been extensively studied and extended, existing methods are susceptible to irregularities of outcome distributions such as outliers and heavy tails. Methods that involve modeling of the outcome are also sensitive to model misspecification. We propose a contrast weighted learning (CWL) framework that exploits the flexibility and robustness of contrast functions to enable robust OTR estimation for a wide range of clinical outcomes. The novel value function in CWL only depends on the pairwise contrast of clinical outcomes between patients irrespective of their distributional features and supports. The Fisher consistency and convergence rate of the estimated decision rule via CWL are established. We illustrate the superiority of the proposed method under finite samples using comprehensive simulation studies with ill-distributed continuous outcomes and ordinal outcomes. We apply the CWL method to two datasets from clinical trials on idiopathic pulmonary fibrosis and COVID-19 to demonstrate its real-world application.


Subject(s)
COVID-19 , Models, Statistical , Humans , Algorithms , Precision Medicine/methods , Computer Simulation
4.
Expert Opin Drug Metab Toxicol ; 18(4): 261-275, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1956525

ABSTRACT

INTRODUCTION: Opioids play a fundamental role in chronic pain, especially considering when 1 of 5 Europeans adults, even more in older females, suffer from it. However, half of them do not reach an adequate pain relief. Could pharmacogenomics help to choose the most appropriate analgesic drug? AREAS COVERED: The objective of the present narrative review was to assess the influence of cytochrome P450 2D6 (CYP2D6) phenotypes on pain relief, analgesic tolerability, and potential opioid misuse. Until December 2021, a literature search was conducted through the MEDLINE, PubMed database, including papers from the last 10 years. CYP2D6 plays a major role in metabolism that directly impacts on opioid (tramadol, codeine, or oxycodone) concentration with differences between sexes, with a female trend toward poorer pain control. In fact, CYP2D6 gene variants are the most actionable to be translated into clinical practice according to regulatory drug agencies and international guidelines. EXPERT OPINION: CYP2D6 genotype can influence opioids' pharmacokinetics, effectiveness, side effects, and average opioid dose. This knowledge needs to be incorporated in pain management. Environmental factors, psychological together with genetic factors, under a sex perspective, must be considered when you are selecting the most personalized pain therapy for your patients.


Subject(s)
Analgesia , Analgesics, Opioid , Cytochrome P-450 CYP2D6 , Pain Management , Analgesia/methods , Analgesia/trends , Analgesics, Opioid/metabolism , Chronic Pain/drug therapy , Chronic Pain/metabolism , Cytochrome P-450 CYP2D6/metabolism , Humans , Pain Management/methods , Pain Management/trends , Pharmacogenetics , Phenotype , Precision Medicine/methods , Precision Medicine/trends
5.
Adv Ther ; 39(7): 3061-3071, 2022 07.
Article in English | MEDLINE | ID: covidwho-1906545

ABSTRACT

The COVID-19 pandemic has drawn considerable attention to viral pneumonia from clinicians, public health authorities, and the general public. With dozens of viruses able to cause pneumonia in humans, differentiating viral from bacterial pneumonia can be very challenging in clinical practice using traditional diagnostic methods. Precision medicine is a medical model in which decisions, practices, interventions, and therapies are adapted to the individual patient on the basis of their predicted response or risk of disease. Precision medicine approaches hold promise as a way to improve outcomes for patients with viral pneumonia. This review describes the latest advances in the use of precision medicine for diagnosing and treating viral pneumonia in adults and discusses areas where further research is warranted.


Subject(s)
COVID-19 , Pneumonia, Bacterial , Pneumonia, Viral , Humans , Pandemics , Pneumonia, Bacterial/diagnosis , Pneumonia, Viral/drug therapy , Pneumonia, Viral/therapy , Precision Medicine/methods
6.
Heart Fail Rev ; 27(4): 1173-1191, 2022 07.
Article in English | MEDLINE | ID: covidwho-1906285

ABSTRACT

Dilated cardiomyopathy (DCM) is an umbrella term entailing a wide variety of genetic and non-genetic etiologies, leading to left ventricular systolic dysfunction and dilatation, not explained by abnormal loading conditions or coronary artery disease. The clinical presentation can vary from asymptomatic to heart failure symptoms or sudden cardiac death (SCD) even in previously asymptomatic individuals. In the last 2 decades, there has been striking progress in the understanding of the complex genetic basis of DCM, with the discovery of additional genes and genotype-phenotype correlation studies. Rigorous clinical work-up of DCM patients, meticulous family screening, and the implementation of advanced imaging techniques pave the way for a more efficient and earlier diagnosis as well as more precise indications for implantable cardioverter defibrillator implantation and prevention of SCD. In the era of precision medicine, genotype-directed therapies have started to emerge. In this review, we focus on updates of the genetic background of DCM, characteristic phenotypes caused by recently described pathogenic variants, specific indications for prevention of SCD in those individuals and genotype-directed treatments under development. Finally, the latest developments in distinguishing athletic heart syndrome from subclinical DCM are described.


Subject(s)
Cardiomyopathy, Dilated , Ventricular Dysfunction, Left , Cardiomyopathy, Dilated/diagnosis , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/therapy , Death, Sudden, Cardiac/etiology , Death, Sudden, Cardiac/prevention & control , Humans , Phenotype , Precision Medicine/methods , Ventricular Dysfunction, Left/complications
7.
Int J Mol Sci ; 23(2)2022 Jan 13.
Article in English | MEDLINE | ID: covidwho-1884201

ABSTRACT

Colorectal cancer (CRC) is still a leading cause of cancer death worldwide. Less than half of cases are diagnosed when the cancer is locally advanced. CRC is a heterogenous disease associated with a number of genetic or somatic mutations. Diagnostic markers are used for risk stratification and early detection, which might prolong overall survival. Nowadays, the widespread use of semi-invasive endoscopic methods and feacal blood tests characterised by suboptimal accuracy of diagnostic results has led to the detection of cases at later stages. New molecular noninvasive tests based on the detection of CRC alterations seem to be more sensitive and specific then the current methods. Therefore, research aiming at identifying molecular markers, such as DNA, RNA and proteins, would improve survival rates and contribute to the development of personalized medicine. The identification of "ideal" diagnostic biomarkers, having high sensitivity and specificity, being safe, cheap and easy to measure, remains a challenge. The purpose of this review is to discuss recent advances in novel diagnostic biomarkers for tumor tissue, blood and stool samples in CRC patients.


Subject(s)
Biomarkers, Tumor , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/etiology , Early Detection of Cancer/methods , Clinical Decision-Making , Colorectal Neoplasms/metabolism , Disease Management , Disease Susceptibility , Feces/chemistry , Humans , Liquid Biopsy/methods , Precision Medicine/methods , Volatile Organic Compounds
8.
Proteomics Clin Appl ; 16(6): e2100097, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1826106

ABSTRACT

In the context of precision medicine, disease treatment requires individualized strategies based on the underlying molecular characteristics to overcome therapeutic challenges posed by heterogeneity. For this purpose, it is essential to develop new biomarkers to diagnose, stratify, or possibly prevent diseases. Plasma is an available source of biomarkers that greatly reflects the physiological and pathological conditions of the body. An increasing number of studies are focusing on proteins and peptides, including many involving the Human Proteome Project (HPP) of the Human Proteome Organization (HUPO), and proteomics and peptidomics techniques are emerging as critical tools for developing novel precision medicine preventative measures. Excitingly, the emerging plasma proteomics and peptidomics toolbox exhibits a huge potential for studying pathogenesis of diseases (e.g., COVID-19 and cancer), identifying valuable biomarkers and improving clinical management. However, the enormous complexity and wide dynamic range of plasma proteins makes plasma proteome profiling challenging. Herein, we summarize the recent advances in plasma proteomics and peptidomics with a focus on their emerging roles in COVID-19 and cancer research, aiming to emphasize the significance of plasma proteomics and peptidomics in clinical applications and precision medicine.


Subject(s)
COVID-19 , Proteomics , Humans , Proteomics/methods , Proteome/metabolism , Precision Medicine/methods , COVID-19/diagnosis , Biomarkers/metabolism
9.
Int J Oncol ; 60(3)2022 03.
Article in English | MEDLINE | ID: covidwho-1726130

ABSTRACT

Biobanks constitute an integral part of precision medicine. They provide a repository of biospecimens that may be used to elucidate the pathophysiology, support diagnoses, and guide the treatment of diseases. The pilot biobank of rare malignant neoplasms has been established in the context of the Hellenic Network of Precision Medicine on Cancer and aims to enhance future clinical and/or research studies in Greece by collecting, processing, and storing rare malignant neoplasm samples with associated data. The biobank currently comprises 553 samples; 384 samples of hematopoietic and lymphoid tissue malignancies, 72 samples of pediatric brain tumors and 97 samples of malignant skin neoplasms. In this article, sample collections and their individual significance in clinical research are described in detail along with computational methods developed specifically for this project. A concise review of the Greek biobanking landscape is also delineated, in addition to recommended technologies, methodologies and protocols that were integrated during the creation of the biobank. This project is expected to re­enforce current clinical and research studies, introduce advances in clinical and genetic research and potentially aid in future targeted drug discovery. It is our belief that the future of medical research is entwined with accessible, effective, and ethical biobanking and that our project will facilitate research planning in the '­omic' era by contributing high­quality samples along with their associated data.


Subject(s)
Biological Specimen Banks/trends , Neoplasms/pathology , Precision Medicine/trends , Cell Line, Tumor , Greece , Humans , Precision Medicine/methods
11.
Per Med ; 18(6): 583-593, 2021 09.
Article in English | MEDLINE | ID: covidwho-1526743

ABSTRACT

SARS-CoV-2, a recently emerged zoonotic virus, has resulted in unstoppable high morbidity and mortality rates worldwide. However, due to a limited knowledge of the dynamics of the SARS-CoV-2 infection, it has been observed that the current COVID-19 therapy has led to some clinical repercussions. We discuss the adverse effects of drugs for COVID-19 primarily based on some clinical trials. As therapeutic efficacy and toxicity of therapy may vary due to different, genetic determinants, sex, age and the ethnic background of test subjects, hence biomarker-based personalized therapy could be more appropriate. We will share our thoughts on the current landscape of personalized therapy as a roadmap to fight against SARS-CoV-2 or another emerging pathogen.


Subject(s)
COVID-19 Drug Treatment , COVID-19/therapy , Precision Medicine/methods , Antiviral Agents/therapeutic use , Drug Repositioning , Humans , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity
12.
FEBS J ; 288(21): 6087-6094, 2021 11.
Article in English | MEDLINE | ID: covidwho-1526365

ABSTRACT

Anthony Letai is Professor in Medicine at Harvard Medical School and Dana Farber Cancer Institute, and President of The Society for Functional Precision Medicine. Among Tony's scientific achievements, work from his lab contributed toward the FDA approval of Venetoclax combination treatment for adult acute myeloid leukemia (AML) patients. Moreover, his studies on cancer cell death have led to the development of BH3 profiling, an assay that allows for the definition of how close a cell is to the threshold required to commit to apoptosis, which can be used to improve clinical outcomes for cancer patients. In this interview, Tony relays the story behind some of his scientific breakthroughs, discusses the importance of function when designing targeted cancer therapies, gives an overview of BH3 profiling and its application to cancer therapy, and recalls the key events and collaborations that drove his successful research career.


Subject(s)
Precision Medicine/methods , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Humans , Leukemia, Myeloid, Acute/drug therapy , Sulfonamides/therapeutic use
13.
Theranostics ; 11(18): 9054-9088, 2021.
Article in English | MEDLINE | ID: covidwho-1524532

ABSTRACT

In recent years tremendous effort has been invested in the field of cancer diagnosis and treatment with an overall goal of improving cancer management, therapeutic outcome, patient survival, and quality of life. Photodynamic Therapy (PDT), which works on the principle of light-induced activation of photosensitizers (PS) leading to Reactive Oxygen Species (ROS) mediated cancer cell killing has received increased attention as a promising alternative to overcome several limitations of conventional cancer therapies. Compared to conventional therapies, PDT offers the advantages of selectivity, minimal invasiveness, localized treatment, and spatio-temporal control which minimizes the overall therapeutic side effects and can be repeated as needed without interfering with other treatments and inducing treatment resistance. Overall PDT efficacy requires proper planning of various parameters like localization and concentration of PS at the tumor site, light dose, oxygen concentration and heterogeneity of the tumor microenvironment, which can be achieved with advanced imaging techniques. Consequently, there has been tremendous interest in the rationale design of PS formulations to exploit their theranostic potential to unleash the imperative contribution of medical imaging in the context of successful PDT outcomes. Further, recent advances in PS formulations as activatable phototheranostic agents have shown promising potential for finely controlled imaging-guided PDT due to their propensity to specifically turning on diagnostic signals simultaneously with photodynamic effects in response to the tumor-specific stimuli. In this review, we have summarized the recent progress in the development of PS-based multifunctional theranostic agents for biomedical applications in multimodal imaging combined with PDT. We also present the role of different imaging modalities; magnetic resonance, optical, nuclear, acoustic, and photoacoustic in improving the pre-and post-PDT effects. We anticipate that the information presented in this review will encourage future development and design of PSs for improved image-guided PDT for cancer treatment.


Subject(s)
Photochemotherapy/methods , Photosensitizing Agents/therapeutic use , Precision Medicine/methods , Humans , Neoplasms/therapy , Photosensitizing Agents/administration & dosage , Photosensitizing Agents/metabolism , Reactive Oxygen Species , Theranostic Nanomedicine/methods , Tumor Microenvironment/drug effects
14.
Chest ; 160(5): 1729-1738, 2021 11.
Article in English | MEDLINE | ID: covidwho-1517092

ABSTRACT

ARDS is a clinically heterogeneous syndrome, rather than a distinct disease. This heterogeneity at least partially explains the difficulty in studying treatments for these patients and contributes to the numerous trials of therapies for the syndrome that have not shown benefit. Recent studies have identified different subphenotypes within the heterogeneous patient population. These different subphenotypes likely have variable clinical responses to specific therapies, a concept known as heterogeneity of treatment effect. Recognizing different subphenotypes and heterogeneity of treatment effect has important implications for the clinical management of patients with ARDS. This review presents studies that have identified different subphenotypes and discusses how they can modify the effects of therapies evaluated in trials that are commonly considered to have shown no overall benefit in patients with ARDS.


Subject(s)
Genetic Heterogeneity , Respiratory Distress Syndrome , Biological Variation, Population , Humans , Precision Medicine/methods , Respiratory Distress Syndrome/genetics , Respiratory Distress Syndrome/therapy , Treatment Outcome
15.
Theranostics ; 12(1): 35-47, 2022.
Article in English | MEDLINE | ID: covidwho-1512994

ABSTRACT

The past decade has witnessed the blossom of nucleic acid therapeutics and diagnostics (theranostics). Unlike conventional small molecule medicines or protein biologics, nucleic acid theranostics have characteristic features such as the intrinsic ability as "information drugs" to code and execute genetic and theranostic information, ready programmability for nucleic acid engineering, intrinsic stimulatory or regulatory immunomodulation, versatile functionalities, and easy conformational recovery upon thermal or chemical denaturation. Single-stranded circular DNA (circDNA) are a class of single-stranded DNAs (ssDNA) featured with their covalently-closed topology. In addition to the basic advantages of nucleic acids-based materials, such as low cost, biocompatibility, and simplicity of chemical modification, the lack of terminals in circDNA prevents exonuclease degradation, resulting in enhanced biostability relative to the corresponding linear ssDNA. circDNA has been explored for versatile theranostic applications. For instance, circDNA has been extensively studied as templates for bioanalytical signal amplification and the synthesis of nano-/micro-/macro- biomaterials via rolling circle amplification (RCA) and rolling circle transcription (RCT) technologies. circDNA has also been commonly used as the scaffolds for the self-assembly of versatile DNA origami. Finally, circDNA has been implemented as theranostic aptamers, miRNA inhibitors, as well as clustered regularly interspaced short palindromic repeats-CRISPR-associated proteins (CRISPR-Cas) gene editing donors. In this review article, we will discuss the chemistry, characteristic properties, and the theranostic applications of circDNA (excluding double-stranded circular DNA such as plasmids); we will also envision the challenges and opportunities in this research field.


Subject(s)
DNA, Circular/therapeutic use , Precision Medicine/methods , Gene Editing , Humans
16.
Ther Drug Monit ; 43(4): 451-454, 2021 08 01.
Article in English | MEDLINE | ID: covidwho-1501177

ABSTRACT

OBJECTIVE: The authors report on a case of a 59-year-old man hospitalized in the intensive care unit because of severe SARS-COV-2 infection (COVID-19). BACKGROUND: The patient had several comorbidities, including liver cirrhosis. He developed ventilation-associated bacterial pneumonia for which he was administered cefepime at an initial dose of 2 g/8 hours. Therapeutic drug monitoring was performed, showing overexposure with an initial trough concentration of >60 mg/L. METHODS: Analysis of pharmacokinetic data and model-based dose adjustment was performed using BestDose software. RESULTS: The patient had unexpected pharmacokinetic parameter values. Serum creatinine was only moderately increased, whereas measured creatinine clearance based on urine collection showed impaired renal function. Bacterial minimum inhibitory concentration was also considered in the dosing decisions. After dose reduction to 0.5 g/8 hours, the cefepime trough concentration progressively declined and reached the target values by the end of the therapy. A post-hoc analysis provided a different interpretation of drug overexposure. CONCLUSION: This case report illustrates how physiological, microbiological, and drug concentration data can be used for model-based dosage individualization of cefepime in intensive care unit patients.


Subject(s)
Anti-Bacterial Agents/pharmacokinetics , Cefepime/pharmacokinetics , Critical Illness/therapy , Drug Dosage Calculations , Precision Medicine/methods , Acute Kidney Injury/blood , Acute Kidney Injury/chemically induced , Acute Kidney Injury/prevention & control , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/adverse effects , Cefepime/administration & dosage , Cefepime/adverse effects , Humans , Male , Middle Aged
17.
Per Med ; 18(6): 573-582, 2021 09.
Article in English | MEDLINE | ID: covidwho-1456228

ABSTRACT

Advancing frontiers of clinical research, we discuss the need for intelligent health systems to support a deeper investigation of COVID-19. We hypothesize that the convergence of the healthcare data and staggering developments in artificial intelligence have the potential to elevate the recovery process with diagnostic and predictive analysis to identify major causes of mortality, modifiable risk factors and actionable information that supports the early detection and prevention of COVID-19. However, current constraints include the recruitment of COVID-19 patients for research; translational integration of electronic health records and diversified public datasets; and the development of artificial intelligence systems for data-intensive computational modeling to assist clinical decision making. We propose a novel nexus of machine learning algorithms to examine COVID-19 data granularity from population studies to subgroups stratification and ensure best modeling strategies within the data continuum.


Subject(s)
COVID-19/therapy , Precision Medicine/methods , Algorithms , Artificial Intelligence/trends , Data Analysis , Data Science/trends , Delivery of Health Care , Electronic Health Records , Humans , Machine Learning , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity
20.
Int J Mol Sci ; 22(18)2021 Sep 07.
Article in English | MEDLINE | ID: covidwho-1403611

ABSTRACT

An aptamer is a short sequence of synthetic oligonucleotides which bind to their cognate target, specifically while maintaining similar or higher sensitivity compared to an antibody. The in-vitro selection of an aptamer, applying a conjoining approach of chemistry and molecular biology, is referred as Systematic Evolution of Ligands by Exponential enrichment (SELEX). These initial products of SELEX are further modified chemically in an attempt to make them stable in biofluid, avoiding nuclease digestion and renal clearance. While the modification is incorporated, enough care should be taken to maintain its sensitivity and specificity. These modifications and several improvisations have widened the window frame of aptamer applications that are currently not only restricted to in-vitro systems, but have also been used in molecular imaging for disease pathology and treatment. In the food industry, it has been used as sensor for detection of different diseases and fungal infections. In this review, we have discussed a brief history of its journey, along with applications where its role as a therapeutic plus diagnostic (theranostic) tool has been demonstrated. We have also highlighted the potential aptamer-mediated strategies for molecular targeting of COVID-19. Finally, the review focused on its future prospective in immunotherapy, as well as in identification of novel biomarkers in stem cells and also in single cell proteomics (scProteomics) to study intra or inter-tumor heterogeneity at the protein level. Small size, chemical synthesis, low batch variation, cost effectiveness, long shelf life and low immunogenicity provide advantages to the aptamer over the antibody. These physical and chemical properties of aptamers render them as a strong biomedical tool for theranostic purposes over the existing ones. The significance of aptamers in human health was the key finding of this review.


Subject(s)
Aptamers, Nucleotide , COVID-19 Drug Treatment , COVID-19 , Precision Medicine/methods , SELEX Aptamer Technique/methods , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/therapeutic use , COVID-19/diagnosis , Humans
SELECTION OF CITATIONS
SEARCH DETAIL